Configurations du plan - Seconde

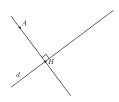
© Pascal Brachet (CC BY NC SA)

https://www.xm1math.net

1. Projeté orthogonal

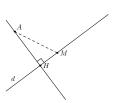
Définition

Le projeté orthogonal d'un point A sur une droite d est le point H sur la droite d tel que la droite (AH) soit perpendiculaire à la droite d.



Propriété(s)

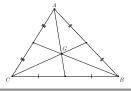
Le projeté orthogonal d'un point A sur une droite d est le point de d qui est le plus proche de A (pour tout point M distinct de H sur d, on a AM > AH).



a) Droites et points remarquables d'un triangle

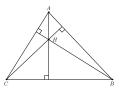
Propriété(s)

Les trois médianes d'un triangle (droites passant par un sommet et le milieu du côté opposé) se coupent en un même point G qui est **le centre de gravité** du triangle.



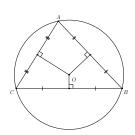
Propriété(s)

Les trois hauteurs d'un triangle (droites passant par un sommet et le projeté orthogonal de ce sommet sur le côté opposé) se coupent en un même point H qui est l'orthocentre du triangle.



Propriété(s)

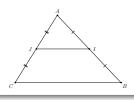
Les trois médiatrices d'un triangle (droites passant par le milieu d'un côté et perpendiculaires à ce côté) se coupent en un même point O qui est **le centre du** cercle circonscrit du triangle.



b) Théorème des milieux

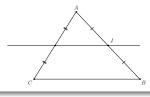
Théorème

Si I est le milieu de [AB] et J est le milieu de [AC] alors (IJ) // (BC) et $IJ = \frac{1}{2}BC$.



Théorème

Si I est le milieu de [AB] alors la droite parallèle à (BC) passant par I coupe [AC] en son milieu.



▶ Exemple: Soit ABC un triangle, I le milieu de [AB], J le milieu de [BC], K le point tel que C soit le milieu de [JK] et L l'intersection entre les droites (IK) et (AC).

- Montrer que les droites (LC) et (IJ) sont parallèles. I est le milieu de [AB] et J est le milieu de [BC] donc ,d'après le $1^{\rm er}$ théorème des milieux, on a $(IJ) \ /\!\!/ (AC)$. On en déduit que $(IJ) \ /\!\!/ (LC)$ car A, C et L sont sur une même droite.
- En déduire que L est le milieu de [IK]. C est le milieu de [JK] et (IJ) // (LC) donc ,d'après le 2^e théorème des milieux, L est le milieu de [IK].
- Montrer que $LC=\frac{1}{4}AC$. Dans le triangle IJK on a $LC=\frac{1}{2}IJ$ et dans le triangle ABC on a $IJ=\frac{1}{2}AC$. Donc, on a bien $LC=\frac{1}{4}AC$.

c) Théorème de Thalès

Théorème

Dans un triangle ABC, si M est sur la droite (AB), si N est sur la droite (AC) et si la droite (MN) est parallèle à (BC) alors $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$.

Théorème

Dans un triangle ABC, si M est sur la droite (AB), si N est sur la droite (AC), si A, M, B et A, N, C sont dans le même ordre et si $\frac{AM}{AB} = \frac{AN}{AC}$ alors (MN) $/\!\!/$ (BC)

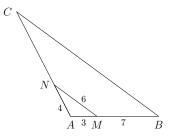
ightharpoonup Exemple:

Dans la configuration ci-contre, on a :

$$AM = 3$$
, $MB = 7$, $AN = 4$, $MN = 6$ et $(MN)//(BC)$. Calculer les distances AC , NC et BC .

Calculer les distances AC, NC et BC.

- On a $\frac{AM}{AB} = \frac{AN}{AC}$. On en déduit que $\frac{3}{10} = \frac{4}{AC} \Leftrightarrow 3 \times AC = 40 \Leftrightarrow AC = \frac{40}{3}$.
- Dès lors, on a $NC = AC 4 = \frac{40}{3} \frac{12}{3} = \frac{28}{3}$.
- On a $\frac{MN}{BC} = \frac{AM}{AB}$. On en déduit que $\frac{6}{BC} = \frac{3}{10} \Leftrightarrow 3 \times BC = 60 \Leftrightarrow BC = 20$.

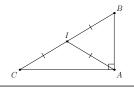


a) Caractérisation d'un triangle rectangle

Propriété(s)

Dire qu'un triangle ABC est rectangle en A équivaut à dire que :

- $AB^2 + AC^2 = BC^2$ (théorème de Pythagore)
- $AI = \frac{BC}{2}$ où I est le milieu de [BC]
- ullet le cercle de diamètre [BC] passe par A



b) Théorème de l'angle droit

Théorème

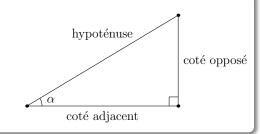
Dire qu'un point M distinct de A et B appartient au cercle de diamètre [AB] équivaut à dire que le triangle AMB est rectangle en M.

c) Trigonométrie dans un triangle rectangle

Propriété(s)

Dans un triangle rectangle:

- $\cos \alpha = \frac{\text{côt\'e adjacent}}{\text{hypot\'enuse}}$
- $\sin \alpha = \frac{\text{côt\'e oppos\'e}}{\text{hypot\'enuse}}$
- $\tan \alpha = \frac{\text{côt\'e oppos\'e}}{\text{côt\'e adjacent}}$

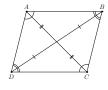


4. Parallélogrammes, rectangles, losanges et carrés

Propriété(s)

Dire qu'un quadrilatère non croisé ABCD est un parallélogramme équivaut à dire qu'il vérifie une des propriétés suivantes :

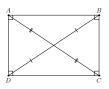
- ullet ses côtés sont parallèles deux à deux
- ses diagonales se coupent en leur milieu
- deux côtés opposés sont parallèles et de même longueur
- les angles opposés sont égaux deux à deux



Propriété(s)

Dire qu'un quadrilatère ABCD est un **rectangle** équivaut à dire qu'il vérifie une des propriétés suivantes :

- c'est un parallélogramme avec un angle droit
- c'est un parallélogramme dont les diagonales ont même lonqueur

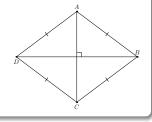


4. Parallélogrammes, rectangles, losanges et carrés

Propriété(s)

Dire qu'un quadrilatère ABCD est un losange équivaut à dire qu'il vérifie une des propriétés suivantes :

- $\bullet \ ses \ quatre \ c\^ot\'es \ ont \ m\^eme \ longueur \\$
- c'est un parallélogramme dont deux côtés consécutifs ont même longueur
- c'est un parallélogramme dont les diagonales sont perpendiculaires



Propriété(s)

Dire qu'un quadrilatère ABCD est un **carré** équivaut à dire qu'il vérifie une des propriétés suivantes :

- il a quatre angles droits et quatre côtés de même longueur
- c'est un rectangle ayant deux côtés consécutifs de même longueur
- c'est un losange ayant un angle droit

Fin du chapitre

