► Activité n°1

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{2}x - 1$.

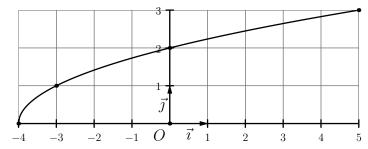
L'image par f de 8 est égale à $\frac{1}{2} \times 8 - 1 = 3$

L'antécédent par f de -3 est -4 car $\frac{1}{2}x - 1 = -3 \Leftrightarrow \frac{1}{2}x = -2 \Leftrightarrow x = -4$

► Activité n°2

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 1$. L'image par f de -1 est égale à $(-1)^2 - 1 = 0$ Les antécédents par f de 3 sont 2 et -2 car : $x^2 - 1 = 3 \Leftrightarrow x^2 = 4 \Leftrightarrow x = 2 \text{ ou } x = -2.$

► Activité n°3



L'image par f de -4 est égale à 0

L'image par f de 5 est égale à 3

L'antécédent par f de 2 est 0

L'antécédent par f de 1 est -3

► Activité n°4

- 1. R* (tous les réels sauf 0) est-il un ensemble symétrique par rapport à 0? OUI
- 2. $[-1; +\infty[$ est-il un ensemble symétrique par rapport à 0? NON
- 3. $\mathbb{R} \{-2, 2\}$ (tous les réels sauf -2 et 2) est-il un ensemble symétrique par rapport à 0? OUI

► Activité n°5

- 1. La fonction f définie sur \mathbb{R}^* par $f(x) = -\frac{4}{x}$ est impaire car : \mathbb{R}^* est symétrique par rapport à 0 pour tout x de \mathbb{R}^* , $f(-x) = -\frac{4}{-x} = \frac{4}{x} = -f(x)$
- 2. La fonction f définie sur $[-1; +\infty[$ par $f(x) = \sqrt{x+1}$ est ni paire, ni impaire car $[-1; +\infty[$ n'est pas symétrique par rapport à 0.

3. La fonction f définie sur $\mathbb{R} - \{-2, 2\}$ par $f(x) = \frac{1}{x^2 - 4}$ est paire car : $\mathbb{R} - \{-2, 2\}$ est symétrique par rapport à 0 pour tout x de $\mathbb{R} - \{-2; 2\}$, $f(-x) = \frac{1}{(-x)^2 - 4} = \frac{1}{x^2 - 4} = f(x)$

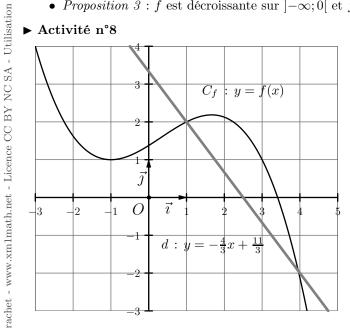
► Activité n°6

- Proposition 1: f est croissante sur $]-\infty;0[$ et f(-3)=-4 FAUSSE
- Proposition 2: f est décroissante sur $]-\infty;0[$ et f(-3)=4 VRAIE
- Proposition 3: f est décroissante sur $]-\infty;0[$ et f(-3)=-4 FAUSSE

► Activité n°7

- Proposition 1: f est croissante sur $]-\infty;0[$ et f(-2)=1 FAUSSE
- Proposition 2: f est croissante sur $]-\infty;0[$ et f(-2)=-1 FAUSSE
- Proposition 3: f est décroissante sur $]-\infty;0[$ et f(-2)=1 VRAIE

► Activité n°8



- 1. La valeur de f(1) est égale à 2
- 2. L'ensemble des solutions de l'équation f(x) = 1 est $S = \{-1, 3\}$
- \odot 3. L'ensemble des solutions de l'inéquation $f(x) \ge 1$ est S = [-3; 3]
 - 4. L'ensemble des solutions de l'inéquation f(x) > 1 est $S = [-3; -1] \cup]-1; 3[$
 - 5. L'ensemble des solutions de l'équation f(x) = -2 est $S = \{4\}$
 - 6. L'ensemble des solutions de l'inéquation $f(x) \ge -2$ est S = [-3; 4]

- 8. Les solutions de l'équation $f(x) = -\frac{4}{3}x + \frac{11}{3}$ sont 1 et 4.
- 9. L'ensemble des solutions de l'équation $f(x) \ge -\frac{4}{3}x + \frac{11}{3}$ est S = [1; 4]
- 10. L'ensemble des solutions de l'équation $f(x) > -\frac{3}{4}x + \frac{11}{3}$ est S =]1; 4[
- 11. f admet un minimum sur [-3; 1] pour x = -1
- 12. f est ni paire, ni impaire car [-3; 5] n'est pas symétrique par rapport à 0

► Activité n°9

 $d(t) = -2.25t^2 + 36t$ (t en secondes)

- 1. d(t) = t(-2.25t + 36). Comme $t \ge 0$, $d(t) \ge 0 \Leftrightarrow -2.25t + 36 \ge 0$ $\Leftrightarrow -2.25t \ge -36 \Leftrightarrow t \le \frac{-36}{-2.25} \Leftrightarrow t \le 16$.
- 2. Pour tout $t \ge 0$: $-2.25(t-8)^2 + 144 = -2.25(t^2 16t + 64) + 144 = -2.25t^2 + 36t 144 + 144 = d(t)$.
- 3. la valeur maximale de d(t) est de 144 et elle est atteinte quand t=8 car $-2.25(t-8)^2$ admet 0 comme maximum pour t=8.