Spécialité - 1^{re} générale

Applications de la dérivation

© Pascal Brachet (CC BY NC SA)

https://www.xm1math.net

1. Utilisation des dérivées pour étudier les variations d'une fonction

a) Signe de la dérivée en fonction du sens de variation

Théorème

Étant donné f une fonction dérivable sur un intervalle I.

- Si f est croissante sur I alors f'(x) reste positif ou nul pour tout x de I;
- $Si\ f\ est\ décroissante\ sur\ I\ alors\ f'(x)\ reste\ négatif\ ou\ nul\ pour\ tout\ x\ de\ I.$

Exemple(s)

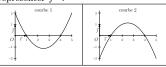
Soit f une fonction définie sur $[0\:;\:5]$ dont le tableau de variations est

x	0		1		4		5
f(x)		\ <u> </u>		/		/	

1. Compléter le tableau ci-dessous :

x	0	1	4	5	
signe de $f'(x)$		0	0		

2. Parmi les deux courbes ci-dessous, désigner la seule qui peut représenter f'?



Réponse :

-	
7	
J	٠.
	$\overline{}$

• •							
x	0		1		4		5
signe de $f'(x)$		-	Ó	+	0	-	

2. Courbe 2

1. Utilisation des dérivées pour étudier les variations d'une fonction

b) Sens de variation en fonction du signe de la dérivée

Théorème

Étant donné f une fonction dérivable sur un intervalle I.

- Si la dérivée reste strictement positive sur I (sauf en un nombre fini de points isolés où elle peut s'annuler) alors on peut affirmer que la fonction est strictement croissante sur I;
- Si la dérivée reste strictement négative sur I (sauf en un nombre fini de points isolés où elle peut s'annuler) alors on peut affirmer que la fonction est strictement décroissante sur I :
- Si la dérivée reste nulle sur I alors on peut affirmer que la fonction est constante sur I.

Exemple(s)

Parmi les trois premières figures, laquelle peut représenter la fonction f sachant que la dernière courbe représente sa dérivée f'?

Réponse: figure 3 car c'est la seule où les variations correspondent au signe de la dérivée.

	0	_	-				-
x	0		1		3		4
Signe de $f'(x)$		+	ó	-	0	+	
f(x)		/		\			

a) Rappels sur les signes

signe de ax + b:

On détermine la valeur de x qui annule ax + b, puis on applique la règle : « signe de a après le 0 ».

0	•				
x	$-\infty$		$-\frac{b}{a}$		$+\infty$
signe de $ax + b$		signe de $-a$	0	signe de \boldsymbol{a}	

signe de $ax^2 + bx + c \ (a \neq 0)$:

On calcule le discriminant $\Delta = b^2 - 4ac$ (sauf cas évidents)

• Si $\Delta < 0$, on applique la règle : « toujours du signe de a ».

x	-∞	$+\infty$
$ax^2 + bx + c$	signe de a	

• Si $\Delta = 0$, on calcule la racine double : $x_1 = -\frac{b}{2a}$.

On applique alors la règle : « toujours du signe de a et s'annule pour $x=x_1$ ».

x	$-\infty$		x_1		$+\infty$
$ax^2 + bx + c$		$\mathrm{signe}\mathrm{de}a$	0	signe de a	

• Si $\Delta > 0$, on calcule les deux racines : $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et

$$x_2 = \frac{-b + \sqrt{\Delta}}{2}$$
.

On applique alors la règle :

« signe de a à l'extérieur des racines ».

x	- ∞	x_1	x_2	+∞
$ax^2 + bx + c$	signe de	a 0	signe de $(-a)$ 0	signe de a

(en supposant que $x_1 < x_2$)

b) Exemples d'étude de variations de fonctions dérivables

Principe

L'étude du signe de la dérivée permet d'établir les variations d'une fonction dérivable.

Exemple(s)

1. Étude des variations de f définie sur \mathbb{R} par $f(x) = x^2 - 2x + 3$: On a f'(x) = 2x - 2 qui est du 1^{er} degré et qui s'annule pour x = 1. On complète en ajoutant la valeur de f(1).

x	$-\infty$		1		+∞
Signe de $f'(x)$		-	0	+	
f(x)		\	2	/	

2. Étude des variations de f définie sur \mathbb{R} par $f(x) = -x^2 + 4x + 1$: On a f'(x) = -2x + 4 qui est du 1^{er} degré et qui s'annule pour x = 2. On complète en ajoutant la valeur de f(2).

x	$-\infty$		2		$+\infty$
Signe de $f'(x)$		+	0	-	
f(x)		_	5	\	

3. Étude des variations de f définie sur R par $f(x) = 2x^3 + 3x^2 - 12x + 1$: On a $f'(x) = 6x^2 + 6x - 12$ qui est du second degré : $\Delta = 324; x_1 = \frac{-6 - 18}{12} = -2; x_2 = \frac{-6 + 18}{12} = 1$ « Du signe de a = 6 à l'extérieur des racines. »

x	$-\infty$	-	-2	1		$+\infty$
Signe de $f'(x)$		+ (0 -	0	+	
f(x)	/	2	11	-6	/	

On complète en ajoutant les valeurs de f(-2) et f(1).

Exemple(s)

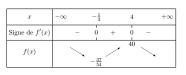
Étude des variations de f définie sur ℝ par

$$f(x) = -x^3 + \frac{11}{2}x^2 + 4x :$$

On a
$$f'(x) = -3x^2 + 11x + 4$$
 qui est du second degré :

On a
$$f'(x) = -3x^2 + 11x + 4$$
 qui est du second degré : $\Delta = 169$; $x_1 = \frac{-11 - 13}{-6} = 4$; $x_2 = \frac{-11 + 13}{-6} = -\frac{1}{3}$

- « Du signe de a = -3 à l'extérieur des racines. »
- On complète en ajoutant les valeurs de $f\left(-\frac{1}{3}\right)$ et f(4).



5. Étude des variations de f définie sur $]-\infty; 2[\cup]2; +\infty[$ par

$$f(x) = \frac{x+1}{x-2} :$$

On a
$$f'(x) = \frac{1 \times (x-2) - 1 \times (x+1)}{(x-2)^2} = \frac{-3}{(x-2)^2}$$

x	-∞ :	2 +∞
-3	-	-
$(x-2)^2$	+	+
Signe de $f'(x)$	-	-
f(x)	/	\

Exemple(s)

6. Étude des variations de f définie sur \mathbb{R} par $f(x) = \frac{2x^2 + 3}{x^2 + 1}$:

On a
$$f'(x) = \frac{4x(x^2+1) - (2x^2+3) \times 2x}{(x^2+1)^2} = \frac{-2x}{(x^2+1)^2}$$

Le numérateur est du 1^{er} degré et s'annule pour x = 0. On complète en ajoutant la valeur de f(0).

x	$-\infty$		0		$+\infty$
-2x		+	Ó	-	
$(x^2 + 1)^2$		+		+	
Signe de $f'(x)$		+	0	-	
f(x)		/	3	\	

7. Étude des variations de f définie sur $]-\infty; -2[\cup]-2; +\infty[$

par
$$f(x) = \frac{x^2 + 2x + 9}{x + 2}$$
:
On a

Signe du numérateur (qui est du second degré) :
$$\frac{(2x+2)(x+2) - (x^2 + 2x + 9) \times 1}{(x+2)^2} = \frac{x^2 + 4x - 5}{(x+2)^2} :$$

$$\Delta = 36$$
; $x_1 = \frac{-4-6}{2} = -5$; $x_2 = \frac{-4+6}{2} = 1$

« Du signe de a = 1 à l'extérieur des racines. »

On complète en ajoutant les valeurs de f(-5) et f(1).

x	$-\infty$	-5	-2		1		$+\infty$
$x^2 + 4x - 5$	+	0 -	-	-	0	+	
$(x + 2)^2$	+	-	-	+		+	
Signe de $f'(x)$	+	0 -	-	-	0	+	
f(x)	/	-8	`	\	4	/	

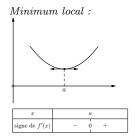
3. Fonction dérivée et extremum local

Théorème

 $\dot{E}tant\ donn\'e\ f\ une\ fonction\ d\'erivable\ sur\ un\ intervalle\ I\ contenant\ a.$

- Si f admet un minimum ou un maximum local en a sur I alors f'(a) = 0 et la tangente à la courbe de f au point d'abscisse a est horizontale.
- Si la dérivée f' s'annule en a en changeant de signe alors f admet un minimum ou un maximum local en a.





Remarque(s)

Le tableau de variations suffit à justifier de la présence d'un maximum ou minimum local.

4. Utilisation des variations pour déterminer le signe d'une expression

Principe

Le tableau de variations d'une fonction peut servir à en déduire le signe de la fonction, ce qui peut permettre de déterminer le signe d'expressions qui ne sont ni du premier degré, ni du second degré.

Exemple(s)

Si on demande de montrer que pour tout x>0, $(3-x)\sqrt{x}\leqslant 2$, on peut étudier le signe de la fonction f définie sur $]0;+\infty[$ par $f(x)=(3-x)\sqrt{x}-2$ en étudiant ses variations car l'étude directe du signe n'est pas évidente.

On a
$$f'(x) = -1 \times \sqrt{x} + (3-x) \times \frac{1}{2\sqrt{x}} = \frac{-\sqrt{x} \times 2\sqrt{x}}{2\sqrt{x}} + \frac{3-x}{2\sqrt{x}} = \frac{-2x+3-x}{2\sqrt{x}} = \frac{3-3x}{2\sqrt{x}}.$$

x	() 1	l		$+\infty$
3-3x		+ ()	-	
$2\sqrt{x}$		+		+	
Signe de $f'(x)$		+ ()	-	
f(x)		/ () (\	

On peut déduire du tableau de variations que pour tout x>0, $f(x)\leqslant 0$ et donc que $(3-x)\sqrt{x}\leqslant 2.$

Fin du chapitre

