Fonction logarithme népérien

▶ Exercice n°1

Exprimer les nombres suivants en fonction de ln(2):

- 1. ln(8)
- 2. $\ln(8) + \ln(32)$
- 3. $\ln(64) \ln(8)$
- 4. $\ln(16) 3\ln(2)$

▶ Exercice n°2

Exprimer les nombres suivants en fonction de ln(3) : (e est le nombre tel que ln = 1)

- 1. $\ln\left(\frac{1}{9}\right)$
- 2. $\ln(81) 2\ln(3)$
- 3. $\ln\left(\frac{3}{e}\right)$
- 4. $\ln (9e^2)$

► Exercice n°3

Dériver la fonction f dans les cas suivants :

- 1. f est définie sur]0; $+\infty[$ par $f(x) = x \ln x$
- 2. f est définie sur]0; $+\infty[$ par $f(x) = (\ln x)^2$
- 3. f est définie sur]0; $+\infty[$ par $f(x) = \frac{1}{\ln x}$
- 4. f est définie sur]0; $+\infty$ [par $f(x) = \frac{4 \ln x}{x^2}$

► Exercice n°4

Déterminer les limites suivantes :

- $1. \lim_{x \to +\infty} 3x + \ln x$
- $2. \lim_{\substack{x \to 0 \\ x > 0}} \frac{\ln x}{x}$
- $3. \lim_{x \to +\infty} x(1 \ln x)$
- 4. $\lim_{\substack{x \to 0 \\ x > 0}} 3(\ln x) + x^2$

5.
$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} - \ln x$$

► Exercice n°5

Résoudre dans $\mathbb R$ les équations suivantes :

- 1. $\ln(x+1) = 0$
- 2. $\ln(2-3x) = \ln 4$
- 3. $\ln(4x) = \ln(x-3)$
- 4. $\ln(x-1) + \ln(x-2) = \ln 6$
- 5. $\ln x = 4$
- 6. $\ln(2x) = 5$
- 7. $\ln(3x) = 1$
- 8. $\ln(1+x) = -2$

► Exercice n°6

Résoudre dans $\mathbb R$ les inéquations suivantes :

- 1. $\ln(x+1) \leq 0$
- $2. \ln x \geqslant 3$
- 3. $1 \ln x \ge 0$

► Exercice n°7

Soit f la fonction définie sur $]0; +\infty[$ par $f(x) = x + \ln x.$

Déterminer les limites de f en 0 et en $+\infty$ et étudier ses variations sur $]0;+\infty[$.

► Exercice n°8

Soit f la fonction définie sur $[0,5; +\infty[$ par $f(x) = x(\ln x - 1)$.

- 1. Déterminer la limite de f en $+\infty$.
- 2. Étudier les variations de f sur $[0,5; +\infty[$
- 3. Étudier le signe de f(x) sur $[0,5; +\infty[$.

► Exercice n°9

Quand l'oreille d'un individu est soumise à une pression acoustique x, exprimée en bars, l'intensité sonore, exprimée en décibels, du bruit responsable de cette pression est donnée par :

$$f(x) = 8.68 \times \ln x + 93.28$$

1. Calculer l'intensité sonore correspondante à une pression acoustique de 5 bars.

- 2. Justifier que f est une fonction strictement croissante sur $]0; +\infty[$.
- 3. Déterminer la limite de f en $+\infty$.
- 4. Un individu normal ne peut supporter un bruit supérieur à 120 décibels.
 - a) On cherche à connaître le premier nombre entier x de bars pour lequel l'intensité f(x) dépasse 120 décibels à l'aide d'un script python.

Pour cela on part d'une pression x=1 que l'on augmente de 1 tant que cela est nécessaire.

Compléter la $3^{\rm e}$ ligne du code python ci-dessous pour qu'il réponde au problème :

```
from math import*
x=1
while 8.68*log(x)+93.28 .....:
x=x+1
print(x)
```

Remarque : avec python le logarithme népérien est donné par log()

b) Résoudre dans $]0; +\infty[$ l'équation f(x) = 120 et retrouver ce que devrait afficher le script python.

► Exercice n°10

La fonction B définie sur [1; 6] par $B(x) = -x^2 + 10x - 9 - 8 \ln x$ représente le bénéfice mensuel (en dizaines de milliers d'euros) réalisé par une entreprise lors de la vente de x centaines d'objets produits par mois.

En étudiant les variations de B, déterminer la quantité d'objets à produire par mois pour obtenir un bénéfice mensuel maximal.

► Exercice n°11

Soit f la fonction définie sur $]0; +\infty[$ par $f(x) = 3 - 2x - \ln x.$

- 1. Déterminer les limites de f en 0 et en $+\infty$.
- 2. Dériver f et étudier ses variations sur $]0; +\infty[$.
- 3. Déterminer une équation de la tangente à la courbe représentative de f au point d'abscisse 1.
- 4. Étudier, par le calcul, la position relative de la courbe représentative de f et de la droite D d'équation y = 3 2x sur $]0; +\infty[$.
- 5. Justifier que l'équation f(x) = 0 admet une unique solution x_0 dans [1; 2]. Déterminer une valeur approchée de x_0 à 0,1 près par défaut.
- 6. Justifier que f est convexe sur $]0; +\infty[$.

▶ Exercice n°12

Dériver la fonction f dans les cas suivants :

- 1. f est définie sur $|2; +\infty[$ par $f(x) = \ln(3x 6)$
- 2. f est définie sur \mathbb{R} par $f(x) = \ln(1+x^2)$
- 3. f est définie sur $]-\infty$; 2[par $f(x) = \ln(-2x+4)$
- 4. f est définie sur]0; $+\infty[$ par $f(x) = \ln\left(3 + \frac{1}{x}\right)$
- 5. f est définie sur]2; $+\infty[$ par $f(x) = \ln\left(\frac{3x}{x-2}\right)$

► Exercice n°13

Une étude portant sur le prix d'un type de cahiers aboutit à la modélisation suivante :

- f est la fonction définie sur [0; 1] par $f(x) = -4 \ln x$;
- g est la fonction définie sur [0; 1] par $g(x) = 4 \ln (6x + 1)$;
- f(x) et g(x) représentent respectivement la quantité de cahiers demandée et offerte, exprimée en milliers, en fonction du prix unitaire x du cahier exprimé en euros.
- 1. Déterminer les limites des fonctions f et g en 0.
- 2. Étudier les variations des fonctions f et g sur $]0\,;\,1]$ et dresser leur tableau de variation.
- 3. En économie, le prix d'équilibre est la valeur de x pour laquelle f(x) = g(x). Déterminer la valeur exacte de ce prix d'équilibre.

► Exercice n°14

Déterminer, dans chacun des cas suivants, le plus petit entier positif n vérifiant la relation donnée :

- 1. $3^n \ge 800$
- $2. \left(\frac{1}{3}\right)^n \leqslant 0.01$
- 3. $(1,03)^n \ge 2$
- 4. $(0.95)^n \leq 0.2$

► Exercice n°15

Le pH d'une solution est défini par pH = $-\log [H_3O^+]$ où $[H_3O^+]$ désigne la concentration en moles par litre d'ions H_3O^+ contenus dans la solution.

- 1. Une solution de 150 millilitres admet une concentration d'ions $\rm H_3O^+$ de 10^{-2} moles par litre.
 - a) Calculer le pH de cette solution.
 - b) Combien de moles d'ions H₃O⁺ contient cette solution?

- 2. On ajoute à la solution 850 millilitres d'eau distillée.
 - a) Quelle est la concentration en ions H₃O⁺ dans la nouvelle solution obtenue?
 - b) En déduire le nouveau pH.

► Exercice n°16

L'échelle de Richter sert à mesurer la puissance d'un tremblement de terre. La magnitude d'un séisme sur cette échelle est donnée par $M=\log\left(\frac{A}{A_0}\right)$ où A représente l'amplitude maximale des ondes relevée par un sismographe et A_0 une amplitude référence.

- 1. Que vaut $\frac{A}{A_0}$ pour un séisme de magnitude égale à 5?
- 2. Si l'amplitude maximale des ondes A est multipliée par 100, de combien augmente la magnitude ?

► Exercice n°17

Pour mesurer la perte de puissance dans une fibre optique, on utilise le coefficient d'atténuation (exprimé en décibels par kilomètre) défini par $A=\frac{1}{L}\times 10\times\log\left(\frac{P_e}{P_s}\right)$ où L est la longueur (en kilomètres) de la fibre optique, P_e est la puissance (en mW) du signal lumineux à l'entrée de la fibre et P_s est la puissance (en mW) du signal lumineux à la sortie de la fibre.

- 1. Un technicien effectue une mesure à la sortie d'une fibre de 5 km dont la puissance d'entrée est $P_e=5$ mW. Il obtient une puissance de sortie égale à $P_s=3.5$ mW. Calculer la valeur du coefficient d'atténuation correspondant.
- 2. Lorsque $P_s = \frac{1}{10} \times P_e$, on considère que la fibre optique doit-être remplacée. Quelle est alors la valeur de A pour une fibre de 10 km?
- 3. Expliquer pourquoi le coefficient d'atténuation ne peut pas être négatif.