a) Langage des événements

Lors d'une expérience aléatoire :

- L'univers est l'ensemble des résultats possibles.
- Un événement A est une partie de l'univers.
- Un événement élémentaire est un événement ne comportant qu'un seul élément.
- L'événement contraire de l'événement A est l'événement noté \overline{A} formé de tous les éléments de l'univers n'appartenant pas à A.
- L'événement $A \cap B$ (noté aussi « A et B ») est l'événement formé des éléments de l'univers appartenant à A et à B.
- L'événement $A \cup B$ (noté aussi « A ou B ») est l'événement formé des éléments de l'univers appartenant au moins à l'un des événements A ou B.
- $\bullet\,$ Deux événements A et B sont dits incompatibles si leur intersection est vide.

b) Loi de probabilité dans un univers fini

Définir une loi de probabilité pour un expérience aléatoire dont l'univers est fini, c'est associer à chaque événement un nombre compris entre 0 et 1 et appelé probabilité de l'événement de telle façon que :

- la somme des probabilités des événements élémentaires soit égale à 1;
- la probabilité d'un événement soit égalé à la somme des probabilités des événements élémentaires qui le constituent.

La loi de probabilité se définit en donnant dans un tableau la probabilité de tous les événements élémentaires.

c) Propriétés générales des probabilités

– Propriété –

Pour une expérience aléatoire telle que l'univers Ω soit fini et quelque soit la loi de probabilité :

- $p(\varnothing) = 0$ et $p(\Omega) = 1$
- Pour tout événement $A, 0 \leq p(A) \leq 1$
- $\bullet\,$ Si un événement A est inclus dans un événement $B,\,p(A)\leqslant p(B)$
- $p(\overline{A}) = 1 p(A)$
- Si A et B sont incompatibles alors $p(A \cup B) = p(A) + p(B)$
- Si A et B ne sont pas incompatibles alors $p(A \cup B) = p(A) + p(B) p(A \cap B)$

d) Cas particulier de l'équiprobabilité

Propriété -

Quand tous les événements élémentaires ont la même probabilité de survenir, on dit que l'on est dans une situation d'équiprobabilité et dans ce cas là on a, pour tout événement A:

$$p(A) = \frac{\text{nombre d'éléments de A}}{\text{nombre d'éléments de }\Omega} = \frac{\text{nombre de cas favorables}}{\text{nombre de cas possibles}}$$
 (si l'univers est fini)

▶ Exemple : Un sac contient 500 jetons répartis de la façon suivante :

60 rouges	54 bleus	5 verts
et carrés	et carrés	et carrés
300 rouges	150 bleus	50 verts

500 jetons de couleur rouge, bleue ou verte et de forme carrée ou non

- 1. On tire au hasard un jeton parmi les 500 :
 - On note R, l'événement « obtenir un jeton rouge ». On a p(R) = .
 - On note B, l'événement « obtenir un jeton bleu ». On a p(B) = .
 - $\bullet\,$ On note V, l'événement « obtenir un jet on vert ». On a p(V)= .
 - On note C, l'événement « obtenir un jeton carré ».

On a
$$p(R \cap C) = .$$

 $p(B \cap C) = .$

et $p(V \cap C) = .$

Que vaut la somme de ces 3 probabilités et à quoi correspond-elle?

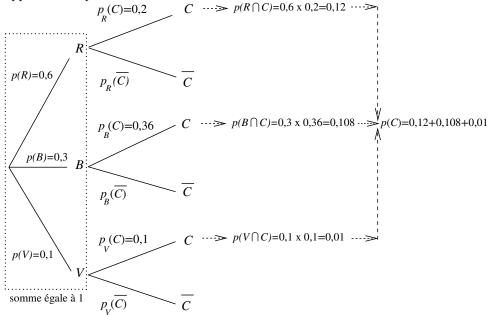
- 2. On suppose maintenant que l'on vient de tirer un jeton rouge :
 - On s'intéresse à la probabilité qu'il soit alors carré. Cette probabilité est notée $p_R(C)$ (probabilité que le jeton soit carré sachant qu'il est rouge) et on a

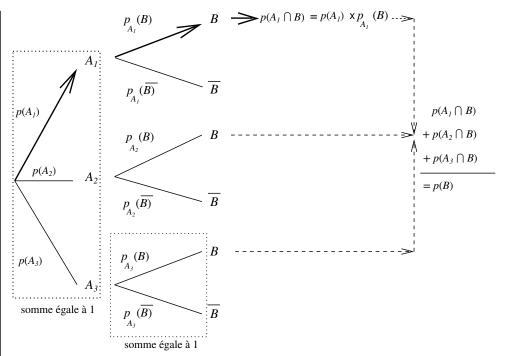
$$p_R(C) =$$

• Calculer le produit $p(R) \times p_R(C)$. Que retrouve-t'on?

- 3. On suppose maintenant que l'on vient de tirer un jeton bleu :
 - On s'intéresse à la probabilité qu'il soit alors carré. Cette probabilité est notée $p_B(C)$ (probabilité que le jeton soit carré sachant qu'il est bleu) et on a $p_B(C) =$
 - Calculer le produit $p(B) \times p_B(C)$. Que retrouve-t'on?
- 4. On suppose maintenant que l'on vient de tirer un jeton vert :
 - On s'intéresse à la probabilité qu'il soit alors carré. Cette probabilité est notée $p_V(C)$ (probabilité que le jeton soit carré sachant qu'il est bleu) et on a $p_V(C) =$
 - Calculer le produit $p(V) \times p_V(C)$. Que retrouve-t'on?

Les calculs précédents peuvent se retrouver dans un nouveau type de schéma que l'on appelle arbre pondéré :

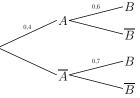




- ▶ Règles de construction et d'utilisation des arbres pondérés :
- Sur les premières branches, on inscrit les $p(A_i)$.
- Sur les branches du type $A_i \longrightarrow B$, on inscrit $p_{A_i}(B)$.
- Le produit des probabilités inscrites sur chaque branche d'un chemin donne la probabilité de l'intersection des événements placés sur ce chemin.
- La somme des probabilités inscrites sur les branches issues d'un même nœud est égale à 1 (loi des nœuds).
- \bullet La probabilité d'un événement B est la somme des probabilités des chemins qui aboutissent à B.

ightharpoonup Exemple 1:

On considère l'arbre pondéré ci-dessous :



1. De quel évènement 0,6 est-il la probabilité?

2. Compléter les probabilités manquantes sur l'arbre.

3. Calculer $p(A \cap B)$, $p(A \cap \overline{B})$, $p(\overline{A} \cap B)$ et $p(\overline{A} \cap \overline{B})$.

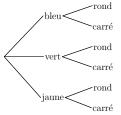
4. Calculer p(B).

5. Calculer $p_B(A)$.

► Exemple 2:

Un sac contient des jetons de trois couleurs, la moitié de blancs, le tiers de verts et le sixième de jaunes. 50% des jetons blancs, 30% des jetons verts et 40% des jetons jaunes sont ronds. Tous les autres jetons sont carrés. On tire au hasard un jeton.

1. Compléter l'arbre pondéré ci-dessous :

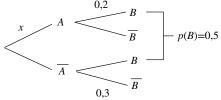


2. Quelle est la probabilité pour que le jeton tiré soit rond?

3. Sachant que le jeton tiré est rond, quelle est la probabilité pour qu'il soit blanc?

ightharpoonup Exemple 3:

On considère l'arbre pondéré ci-dessous :



1. Compléter les probabilités manquantes sur l'arbre.

2. Déterminer x pour qu'on ait bien p(B) = 0, 5

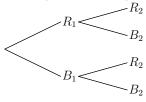
3. Calculer $p(\overline{A} \cap B)$.

4. Calculer $p_{\overline{B}}(A)$.

ightharpoonup Exemple 4:

Un sac contient 9 jetons : 5 rouges et 4 bleus. On tire au hasard un jeton, puis un deuxième sans remettre le premier dans le sac. On note :

- R_1 , l'événement « le 1^{er} jeton tiré est rouge »
- R_2 , l'événement « le 2^e jeton tiré est rouge »
- B_1 , l'événement « le $1^{\rm er}$ jeton tiré est bleu »
- B_2 , l'événement « le 2^e jeton tiré est bleu »
- 1. Compléter l'arbre pondéré ci-dessous :



 ${\bf 2.}$ Calculer la probabilité de tirer 2 jetons rouges .

 ${\bf 3.}$ Calculer la probabilité que le deuxième jet on tiré soit rouge.

\triangleright Exemple 1:

L'organisateur d'une tombola vend 100 billets à 1 euro pièce.

- l'un des billets permet de gagner un lot d'une valeur de 40 euros;
- 10 billets permettent de gagner un lot d'une valeur de 2 euros;
- tous les autres billets sont perdants.
- 1. Quel est le gain total réalisé par l'organisateur? Que lui rapporte en moyenne chaque billet vendu?
- **2.** On note X le gain effectif obtenu par quelqu'un qui a acheté un billet, c'est à dire la différence entre la somme gagnée et le prix du billet.

Les valeurs possibles de X sont donc 39 (gros lot), 1 (petit lot) et -1 (billet perdant). Compléter le tableau ci-dessous :

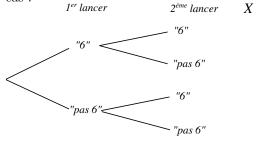
gain effectif possible X	-1	1	39	
probabilité que X soit égale à ce gain	$p\left(X = -1\right) =$	p(X=1) =	$p\left(X=39\right) =$	

3. Calculer la moyenne du gain pondérée par les probabilités, c'est à dire $p(X=-1)\times (-1)+p(X=1)\times 1+p(X=39)\times 39$. Que retrouve-t'on?

ightharpoonup Exemple 2:

On lance deux fois de suite un dé et on note X le nombre de 6 que l'on peut obtenir.

1. Compléter l'arbre pondéré ci-dessous et indiquer la valeur de X pour chacun des 4 cas :



2. Compléter le tableau suivant :

2. Completer to tableau burvant .							
X	0	1	2				
probabilité	p(X=0) =	p(X=1) =	p(X=2) =				

3. Calculer la somme $E = p(X = 0) \times 0 + p(X = 1) \times 1 + p(X = 2) \times 2$.

4. Le script python ci-dessous permet de simuler N fois les 2 lancers de dé et affiche le nombre moven de 6 obtenus :

```
from random import *
nb_de_six=0
lancer=0
N=int(input("N=?"))
for i in range(N) :
    for lancer in range(2):
        if(randint(1,6)==6):
            nb_de_six=nb_de_six+1
print("moyenne de 6 obte-
nus=",nb_de_six/N)
```

Les résultats obtenus lors d'une exécution du script sont les suivants : (les résultats différent à chaque exécution mais la tendance reste la même)

N=?100 moyenne de 6 obtenus= 0.31 N=?1000 moyenne de 6 obtenus= 0.345 N=?10000 moyenne de 6 obtenus= 0.3353 N=?100000 moyenne de 6 obtenus= 0.33315

Compléter le tableau suivant :

N	100	1000	10000	100000
Différence entre la moyenne de 6 obtenus et ${\cal E}$				

Que constate-t'on?