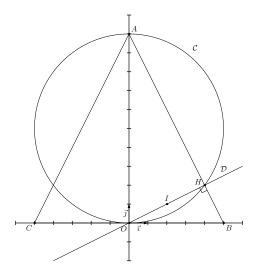
▶ Exercice n°1

Dans un repère orthonormé (O, \vec{i}, \vec{j}) d'unité 1 cm, on considère les points $A\begin{pmatrix} 0 \\ 10 \end{pmatrix}$, $B\begin{pmatrix} 5 \\ 0 \end{pmatrix}$ et $C\begin{pmatrix} -5 \\ 0 \end{pmatrix}$. On note H le pied de la hauteur issue de O dans le triangle OAB.

- 1. a) Déterminer une équation cartésienne de la droite (BA).
 - b) Déterminer une équation cartésienne de \mathcal{D} , la hauteur issue de O dans le triangle OAB.
 - c) En résolvant un système, déduire des deux questions précédentes les coordonnées du point H.
 - d) Calculer la distance OH.
- 2. a) Calculer les coordonnées de I, le milieu de [OH].
 - b) La droite (AI) est-elle perpendiculaire à la droite (CH)?
- 3. Déterminer une équation cartésienne de \mathcal{C} , le cercle de diamètre [OA].
- 4. Soit \mathcal{C}' l'ensemble des points $M\begin{pmatrix} x \\ y \end{pmatrix}$ tels que $x^2 + y^2 4x 2y = 0$.
 - a) Montrer que \mathcal{C}' est un cercle dont on donnera le centre et le rayon.
 - b) Montrer que le cercle \mathcal{C}' passe par le point H et déterminer une équation cartésienne de \mathcal{T} , la tangente à \mathcal{C}' passant par H.



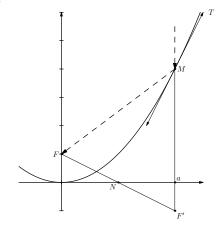
► Exercice n°2

Dans un repère orthonormé on considère C_f , la courbe représentative de la

fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{4}x^2$ et le point fixe $F\begin{pmatrix} 0\\1 \end{pmatrix}$.

Pour tout réel a non nul, on note :

- M le point de la courbe C_f d'abscisse a;
- T la tangente à la courbe C_f au point M;
- F' le point d'abscisse a et d'ordonnée -1;
- N le milieu de [FF'].



- 1. Déterminer, en utilisant la formule y = f(a) + f'(x a), une équation de la tangente T en fonction de a.
- 2. En utilisant que N le milieu de [FF'], déterminer, en fonction de a, les coordonnées du point N. Justifier alors que les coordonnées de N vérifient l'équation de la tangente T déterminée à la question 1.
- 3. Déterminer un vecteur directeur de la tangente T et montrer que ce vecteur directeur est orthogonal au vecteur FF'.

Remarque : cela prouve que tout rayon (symbolisé par la flèche en pointillé) se propageant parallèlement à l'axe de la parabole se réfléchit en un rayon (symbolisé par la droite (MF)) qui passe par le point fixe F appelé foyer de la parabole. Cette propriété est notamment utilisée dans les antennes paraboliques.