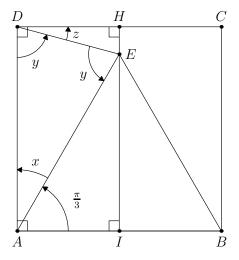
► Exercice n°1

Calculer $\sin x$ sachant que $\cos x = \frac{\sqrt{7}}{4}$ et que $x \in \left[-\frac{\pi}{2}; 0\right]$.

▶ Exercice n°2

On considère l'expression $A(x) = \sin(3\pi - x) + \cos(\frac{\pi}{2} + x) + \sin(2\pi - x)$. Simplifier A(x) en l'exprimant uniquement en fonction de $\sin x$.


► Exercice n°3

Résoudre dans \mathbb{R} l'équation : $2(\sin x)^2 - 3\sin x + 1 = 0$

► Exercice n°4

Dans la figure ci-contre dont les angles sont orientés dans le sens direct :

- ABCD est un carré de côté 2;
- ABE est un triangle équilatéral;
- I est le milieu de [AB];
- H est le milieu de [DC].
- 1. a) Sachant qu'une mesure de l'angle $\left(\overrightarrow{AI}, \overrightarrow{AE}\right)$ est $\frac{\pi}{3}$, déterminer une mesure x de l'angle $\left(\overrightarrow{AE}, \overrightarrow{AD}\right)$.
 - b) Sachant que le triangle \overrightarrow{AED} est forcément isocèle en A; déterminer une mesure y de l'angle $\left(\overrightarrow{DA},\overrightarrow{DE}\right)$.
 - c) En déduire que l'on a $z = \frac{\pi}{12}$.
- 2. a) Calculer la valeur exacte de la distance HE.
 - b) En déduire que la distance DE est égale à $\sqrt{8-4\sqrt{3}}$.
- 3. Déterminer, à l'aide des résultats précédents , la valeur exacte de $\sin\left(\frac{\pi}{12}\right)$.

Spécialité 1^{re}

DEVOIR À LA MAISON N°2

Mathématiques

► Exercice n°1

Calculer $\sin x$ sachant que $\cos x = \frac{\sqrt{7}}{4}$ et que $x \in \left[-\frac{\pi}{2}; 0\right]$.

▶ Exercice n°2

On considère l'expression $A(x) = \sin(3\pi - x) + \cos(\frac{\pi}{2} + x) + \sin(2\pi - x)$. Simplifier A(x) en l'exprimant uniquement en fonction de $\sin x$.


▶ Exercice n°3

Résoudre dans \mathbb{R} l'équation : $2(\sin x)^2 - 3\sin x + 1 = 0$

► Exercice n°4

Dans la figure ci-contre dont les angles sont orientés dans le sens direct :

- ABCD est un carré de côté 2;
- $\bullet \ ABE$ est un triangle équilatéral ;
- I est le milieu de [AB];
- H est le milieu de [DC].
- 1. a) Sachant qu'une mesure de l'angle $(\overrightarrow{AI}, \overrightarrow{AE})$ est $\frac{\pi}{3}$, déterminer une mesure x de l'angle $(\overrightarrow{AE}, \overrightarrow{AD})$.
 - b) Sachant que le triangle \overrightarrow{AED} est forcément isocèle en A; déterminer une mesure y de l'angle $(\overrightarrow{DA}, \overrightarrow{DE})$.
 - c) En déduire que l'on à $z = \frac{\pi}{12}$.
- 2. a) Calculer la valeur exacte de la distance HE.
 - b) En déduire que la distance DE est égale à $\sqrt{8-4\sqrt{3}}$.
- 3. Déterminer, à l'aide des résultats précédents , la valeur exacte de $\sin\left(\frac{\pi}{12}\right)$.

